skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fagan, William_F"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Long‐distance migrations are a striking, and strikingly successful, adaptation for highly mobile terrestrial animals in seasonal environments. However, it remains an open question whether migratory animals are more resilient or less resilient to rapidly changing environments. Furthermore, the mechanisms by which animals adapt or modify their migrations are poorly understood. We describe a dramatic shift of over 500 km in the wintering range of the Western Arctic Herd, a large caribou (Rangifer tarandus) herd in northwestern Alaska, an area that is undergoing some of the most rapid warming on Earth. Between 2012 and 2020, caribou switched from reliably wintering in maritime tundra in the southwesternmost portion of their range to more frequently wintering in mountainous areas to the east. Analysis of this range shift, in conjunction with nearly 200 documented mortality events, revealed that it was both broadly adaptive and likely driven by collective memory of poor winter conditions. Before the range shift, overwinter survival in the maritime tundra was high, routinely surpassing 95%, but falling to around 80% even as fewer animals wintered there. Meanwhile, in the increasingly used mountainous portion of the range, survival was intermediate and less variable across years compared to the extremes in the southern winter ranges. Thus, the shift only imperfectly mitigated overall increased mortality rates. The range shift has also been accompanied by changes in seasonal patterns of survival that are consistent with poorer nutritional intake in winter. Unexpectedly, the strongest single predictor of an individual's probability of migrating south was the overall survival of animals in the south in the preceding winter, suggesting that the range shift is in part driven by collective memory. Our results demonstrate the importance and use of collective decision making and memory for a highly mobile species for improving fitness outcomes in a dynamic, changing environment. 
    more » « less
  2. Abstract Projects focused on movement behaviour and home range are commonplace, but beyond a focus on choosing appropriate research questions, there are no clear guidelines for such studies. Without these guidelines, designing an animal tracking study to produce reliable estimates of space‐use and movement properties (necessary to answer basic movement ecology questions), is often done in an ad hoc manner.We developed ‘movedesign’, a user‐friendly Shiny application, which can be utilized to investigate the precision of three estimates regularly reported in movement and spatial ecology studies: home range area, speed and distance travelled. Conceptually similar to statistical power analysis, this application enables users to assess the degree of estimate precision that may be achieved with a given sampling design; that is, the choices regarding data resolution (sampling interval) and battery life (sampling duration).Leveraging the ‘ctmm’Rpackage, we utilize two methods proven to handle many common biases in animal movement datasets: autocorrelated kernel density estimators (AKDEs) and continuous‐time speed and distance (CTSD) estimators. Longer sampling durations are required to reliably estimate home range areas via the detection of a sufficient number of home range crossings. In contrast, speed and distance estimation requires a sampling interval short enough to ensure that a statistically significant signature of the animal's velocity remains in the data.This application addresses key challenges faced by researchers when designing tracking studies, including the trade‐off between long battery life and high resolution of GPS locations collected by the devices, which may result in a compromise between reliably estimating home range or speed and distance. ‘movedesign’ has broad applications for researchers and decision‐makers, supporting them to focus efforts and resources in achieving the optimal sampling design strategy for their research questions, prioritizing the correct deployment decisions for insightful and reliable outputs, while understanding the trade‐off associated with these choices. 
    more » « less
  3. Abstract Conservation of migratory species exhibiting wide‐ranging and multidimensional behaviors is challenged by management efforts that only utilize horizontal movements or produce static spatial–temporal products. For the deep‐diving, critically endangered eastern Pacific leatherback turtle, tools that predict where turtles have high risks of fisheries interactions are urgently needed to prevent further population decline. We incorporated horizontal–vertical movement model results with spatial–temporal kernel density estimates and threat data (gear‐specific fishing) to develop monthly maps of spatial risk. Specifically, we applied multistate hidden Markov models to a biotelemetry data set (n = 28 leatherback tracks, 2004–2007). Tracks with dive information were used to characterize turtle behavior as belonging to 1 of 3 states (transiting, residential with mixed diving, and residential with deep diving). Recent fishing effort data from Global Fishing Watch were integrated with predicted behaviors and monthly space‐use estimates to create maps of relative risk of turtle–fisheries interactions. Drifting (pelagic) longline fishing gear had the highest average monthly fishing effort in the study region, and risk indices showed this gear to also have the greatest potential for high‐risk interactions with turtles in a residential, deep‐diving behavioral state. Monthly relative risk surfaces for all gears and behaviors were added to South Pacific TurtleWatch (SPTW) (https://www.upwell.org/sptw), a dynamic management tool for this leatherback population. These modifications will refine SPTW's capability to provide important predictions of potential high‐risk bycatch areas for turtles undertaking specific behaviors. Our results demonstrate how multidimensional movement data, spatial–temporal density estimates, and threat data can be used to create a unique conservation tool. These methods serve as a framework for incorporating behavior into similar tools for other aquatic, aerial, and terrestrial taxa with multidimensional movement behaviors. 
    more » « less
  4. Abstract Ecologists have long been interested in linking individual behaviour with higher level processes. For motile species, this ‘upscaling’ is governed by how well any given movement strategy maximizes encounters with positive factors and minimizes encounters with negative factors. Despite the importance of encounter events for a broad range of ecological processes, encounter theory has not kept pace with developments in animal tracking or movement modelling. Furthermore, existing work has focused primarily on the relationship between animal movement and encounterrateswhile the relationship between individual movement and the spatiallocationsof encounter events in the environment has remained conspicuously understudied.Here, we bridge this gap by introducing a method for describing the long‐term encounter location probabilities for movement within home ranges, termed the conditional distribution of encounters (CDE). We then derive this distribution, as well as confidence intervals, implement its statistical estimator into open‐source software and demonstrate the broad ecological relevance of this distribution.We first use simulated data to show how our estimator provides asymptotically consistent estimates. We then demonstrate the general utility of this method for three simulation‐based scenarios that occur routinely in biological systems: (a) a population of individuals with home ranges that overlap with neighbours; (b) a pair of individuals with a hard territorial border between their home ranges; and (c) a predator with a large home range that encompassed the home ranges of multiple prey individuals. Using GPS data from white‐faced capuchinsCebus capucinus, tracked on Barro Colorado Island, Panama, and sleepy lizardsTiliqua rugosa,tracked in Bundey, South Australia, we then show how the CDE can be used to estimate the locations of territorial borders, identify key resources, quantify the potential for competitive or predatory interactions and/or identify any changes in behaviour that directly result from location‐specific encounter probability.The CDE enables researchers to better understand the dynamics of populations of interacting individuals. Notably, the general estimation framework developed in this work builds straightforwardly off of home range estimation and requires no specialized data collection protocols. This method is now openly available via thectmm Rpackage. 
    more » « less
  5. Abstract Accurately quantifying species’ area requirements is a prerequisite for effective area‐based conservation. This typically involves collecting tracking data on species of interest and then conducting home‐range analyses. Problematically, autocorrelation in tracking data can result in space needs being severely underestimated. Based on the previous work, we hypothesized the magnitude of underestimation varies with body mass, a relationship that could have serious conservation implications. To evaluate this hypothesis for terrestrial mammals, we estimated home‐range areas with global positioning system (GPS) locations from 757 individuals across 61 globally distributed mammalian species with body masses ranging from 0.4 to 4000 kg. We then applied block cross‐validation to quantify bias in empirical home‐range estimates. Area requirements of mammals <10 kg were underestimated by a mean approximately15%, and species weighing approximately100 kg were underestimated by approximately50% on average. Thus, we found area estimation was subject to autocorrelation‐induced bias that was worse for large species. Combined with the fact that extinction risk increases as body mass increases, the allometric scaling of bias we observed suggests the most threatened species are also likely to be those with the least accurate home‐range estimates. As a correction, we tested whether data thinning or autocorrelation‐informed home‐range estimation minimized the scaling effect of autocorrelation on area estimates. Data thinning required an approximately93% data loss to achieve statistical independence with 95% confidence and was, therefore, not a viable solution. In contrast, autocorrelation‐informed home‐range estimation resulted in consistently accurate estimates irrespective of mass. When relating body mass to home range size, we detected that correcting for autocorrelation resulted in a scaling exponent significantly >1, meaning the scaling of the relationship changed substantially at the upper end of the mass spectrum. 
    more » « less